SELECTIVE HYDROGENOLYSIS OF GLYCEROL TO PROPYLENE GLYCOL BY USING CU/CR/ZN/ZR MIXED METAL OXIDES CATALYST

Opportunity
This invention is a method to convert a sugar alcohol, glycerol, to propylene glycol in high yield.

Our Solution
• Improved propylene glycol yield
• Reduced yield of undesirable products
• Improved reaction at a moderate temperature and pressure

Background
The increased production of biodiesel has resulted in a concomitant increased availability of glycerol, a byproduct of the production process.

As a result, the price of glycerol has experienced a sharp downward spiral. Challenges have confronted biodiesel producers who have pursued glycerol conversion to the propylene glycol, a more desirable and higher priced chemical that is used in a wide range of industrial and consumer products.

Conversion of glycerol in a cost effective manner is encumbered by low yield and the presence of undesirable contaminants. In this invention copper, chromium and zinc mixed oxide catalysts supported on zirconia are used at a moderate temperature and pressure to selectively produce propylene glycol at enhanced yield.

The process reduces the yield of undesirable products such as ethylene glycol, lactic acid and one-carbon molecules.

Publications
Lekha Charan Meher, Rajesh Gopinath, S. N. Naik, and Ajay K. Dalai Catalytic Hydrogenolysis of glycerol to Propylene Glycol over Mixed Oxides Derived from a Hydrotalcite-Type Precursor
Industrial & Engineering Chemistry Research 2009 48 (4), 1840-1846

Patent status
PCT application # PCT/CA2014/050183 was filed on March 6, 2014.

Inventors: Professor Ajay Dalai
Reference number: 11-024

For more information: Innovation Enterprise Engineering and Physical Sciences Portfolio Manager
ie.contact@usask.ca
+1 306 966 1465
250 – 15 Innovation Blvd Saskatoon, SK S7N 2X8 Canada